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We analyse the currently popular vortex identification criteria that are based on point-
wise analysis of the velocity gradient tensor. A new measure of spiralling compactness
of material orbits in vortices is introduced and using this measure a new local vortex
identification criterion and requirements for a vortex core are proposed. The inter-
relationships between the different criteria are explored analytically and in a few flow
examples, using both zero and non-zero thresholds for the identification parameter.
These inter-relationships provide a new interpretation of the various criteria in terms
of the local flow kinematics. A canonical turbulent flow example is studied, and it
is observed that all the criteria, given the proposed usage of threshold, result in
remarkably similar looking vortical structures. A unified interpretation based on local
flow kinematics is offered for when similarity or differences can be expected in the
vortical structures educed using the different criteria.

1. Introduction
Vortices are often viewed as “the sinews and muscles of turbulence” (Küchermann

1965) and yet their identification is hindered by the lack of an accepted mathematical
definition of a ‘vortex’ (our usage of the term ‘vortex’ refers to a ‘vortex core’, see
Jeong & Hussain 1995). It may seem surprising that in a long-studied field such as
fluid mechanics a fundamental question like this still has no clear answer. As noted
by Chong, Perry & Cantwell (1990) “. . . it is unlikely that any definition of a vortex
will win universal acceptance”. Indeed, no single definition of a vortex is currently
universally accepted, despite the fact that fluid dynamicists continue to think in terms
of vortices.

The characteristic shapes of vortical structures in turbulence are a question of long-
standing interest (for some reviews on this topic refer to Cantwell 1981; Hussain 1986;
Robinson 1991). Through study of the velocity gradient tensor, regions of vorticity in
the form of filaments, sheets, and blobs have been identified. Vortex filaments play
an important role in the overall turbulence dynamics: vortex ‘worms’ in isotropic
turbulence (Jiménez et al. 1993), vortex ‘braids’ in turbulent shear layers (Rogers &
Moser 1994), quasi-streamwise vortices (Robinson 1991; Brook & Hanratty 1993), and
‘hairpin’ vortices in wall turbulence (Head & Bandyopadhyay 1981; Smith et al. 1991;
Adrian, Meinhart & Tomkins 2000) are important examples of coherent structures
that approximate vortex filaments.

The term ‘vortex filament’ connotes a long, thin vortical structure, as opposed to
a three-dimensional blob, or a two-dimensional vortex sheet, or a field of constant
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vorticity such as a uniform shear flow. Likewise, it implies a finite-diameter core in
which vorticity is concentrated, and hence the non-uniform spatial distribution of
vorticity is an essential element in the definition. In ideal fluids the existence of a
sharp boundary between rotational and irrotational fluid results in an unequivocal
definition of a vortex filament (Saffman 1992). In real fluids, however, the diffusion of
vorticity by viscosity prohibits the possibility of such a crisp definition. The diffusion
by viscosity, coupled with the interaction of vorticity distribution with strain field,
makes the problem of identifying vortex filaments in real fluids quite complicated.

The vortex filament is an attractive fluid dynamic concept for several reasons. First
and foremost, it allows simple understanding of a large part of the entire flow using
the law of Biot-Savart. To be able to apply the law of Biot-Savart or higher-order
approximations (cf. Moore & Saffman 1972) it is necessary for the core diameter of
a finite filament to be small compared to the radius of curvature of the filament.
Since the filament itself occupies a rather small volume, the Biot-Savart law effects
a type of data compression, making the entire flow understandable in terms of the
vortex-induced flow and the dynamics of the filament.

It appears that common usage of the term ‘vortex core’ often implies a filamentary
geometry. Commonly used intuitive definitions of a vortex also contain the essential
characteristics of the flow induced by a vortex filament. For example, Lugt (1979)
requires that a vortex should have a multitude of material particles rotating around
a common centre; Robinson (1991) states “A vortex exists when instantaneous
streamlines mapped onto a plane normal to the vortex core exhibit a roughly circular
or spiral pattern, when viewed from a reference frame moving with the centre of the
vortex core”.

Local or point-wise methods of vortex identification define a function that can be
evaluated point-by-point and then classify each point as being inside or outside a
vortex according to a criterion based on the point values. Most local vortex identifica-
tion criteria are based on the kinematics implied by the velocity gradient tensor, ∇v,
thereby making them Galilean invariant. The most popularly used local criteria are:
Q (Hunt, Wray & Moin 1988), λ2 (Jeong & Hussain 1995), � (Chong et al. 1990),
and λci (Zhou et al. 1999). The next section gives an overview of these criteria. All
the above criteria are concerned with detecting vortex filaments. In fact, one of the
chief virtues of these detection methods is that they discriminate against vortex sheets,
rendering the vortex filaments more visible in complex vorticity fields. Although these
criteria are developed for isolated vortex filaments, they are frequently applied to
complex flows with interacting vortices. The objective of identifying the most intense
structures usually justifies this application; however, the educed structure should be
interpreted with care. The educed vortex structure obtained from the usage of these
kinematic criteria can be used as a basis for formulating dynamic models of flow
evolution (for example refer to Perry & Marusic 1995; Marusic 2001).

In this paper we consider vortex identification by restricting attention to the special
case of a vortex filament. Non-filamentary vorticity distributions also play an impor-
tant role in the dynamics of many flows, but are not a subject of the present
investigation. The local criteria discussed here can be modified to identify such non-
filamentary vorticity regions (for example see Tanaka & Kida 1993; Horiuti 2001).
This paper describes an extension of the swirling strength criterion described by Zhou
et al. (1999) by introducing a two-parameter system for vortex identification. These
parameters measure the swirling strength and spiralling compactness of the local
streamline geometry. A survey of literature yields contradictory results regarding the
comparison of vortex structure educed using the different local criteria. For example,
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Jeong & Hussain (1995) observe significant differences in various flow examples,
whereas Dubief & Delcayre (2000) see remarkably similar looking structures for many
turbulent flows. We use our two-parameter system to analytically relate the different
schemes and form a physical basis for explaining these observations. This allows us
to formulate a unified interpretation by reconciling the different observations using
the two-parameter system and understand the nature of the similarity or differences,
as opposed to a simple comparison. The relationship with the various schemes in
terms of the two kinematic parameters provides a new interpretation of the different
criteria in terms of the local kinematics of the flow. The intense structures in many
turbulent flows are seen to be approximately locally two-dimensional with limited
radial motion, based on which we propose a simple ‘equivalent threshold’ that results
in remarkably similar looking vortical structures extracted by the different criteria.

2. Background of vortex identification schemes
In this section we provide an overview of popular local schemes and one non-local

scheme for vortex identification. The reader is referred to Jeong & Hussain (1995) for
a discussion on the inadequacies of common intuitive measures of detecting vortices:
local pressure minima, closed or spiralling streamlines and pathlines, and iso-vorticity
surfaces.

2.1. Local approaches based on velocity gradient tensor

We briefly discuss Galilean invariant vortex identification techniques based on local
analysis of the velocity gradient tensor, ∇v.

2.1.1. Q criterion

The Q criterion (Hunt et al. 1988) identifies vortices as flow regions with positive
second invariant of ∇v, i.e. Q > 0. Additionally, the pressure in the eddy region is
required to be lower than the ambient pressure. The second invariant, Q (defined as
Q =((∇ · v)2 − tr(∇v2))/2), for an incompressible flow (∇ · v = 0) can be written as

Q = 1
2
(‖Ω‖2 − ‖S‖2), (2.1)

where ‖Ω‖ = tr[ΩΩ t ]1/2 and ‖S‖ = tr[SSt ]1/2; S and Ω are the symmetric and anti-
symmetric components of ∇v defined as S = 1

2
(∇v + (∇v)t ) and Ω = 1

2
(∇v − (∇v)t )

respectively. Hence, in an incompressible flow Q is a local measure of the excess
rotation rate relative to the strain rate.

Note that Q > 0 does not guarantee the existence of a pressure minimum inside the
region identified by it (Jeong & Hussain 1995). In most cases, however, the pressure
condition is subsumed by Q > 0 (Jeong & Hussain 1995; Dubief & Delcayre 2000,
refer to their discussion on a thin low-pressure tube). In this paper we use the Q

criterion without the additional pressure condition.

2.1.2. λ2 criterion

The λ2 criterion (Jeong & Hussain 1995) is formulated based on the observation
that the concept of a local pressure minimum in a plane fails to identify vortices under
strong unsteady and viscous effects. By neglecting these unsteady and viscous effects,
the symmetric part of the gradient of the incompressible Navier–Stokes equation can
be expressed as

S2 + Ω2 = − 1

ρ
∇(∇p), (2.2)
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where p is the pressure and equation (2.2) is a representation of the pressure Hessian
((∇(∇p))ij = ∂2p/∂xi∂xj ). To capture the region of local pressure minimum in a plane,
Jeong & Hussain (1995) define the vortex core as a connected region with two positive
eigenvalues of the pressure Hessian. We comment on this requirement later in this
section. If the eigenvalues of the symmetric tensor S2 +Ω2 are ordered as λ1 � λ2 � λ3,
this definition is equivalent to the requirement that λ2 < 0 at every point inside the
vortex core. The eigenvalues of S2 +Ω2 and Q are related by (Jeong & Hussain 1995)

Q = − 1
2
tr(S2 + Ω2) = − 1

2
(λ1 + λ2 + λ3). (2.3)

It can be shown that while the Q criterion measures the excess of rotation rate over
the strain rate magnitude in all directions, the λ2 criterion looks for this excess only
on a specific plane (Jeong & Hussain 1995).

From multi-variable calculus, the point of local pressure minimum in a plane
requires two eigenvalues of the local pressure Hessian to be positive and the local
pressure gradient component on the plane to be zero. The region in which the two
eigenvalues of the pressure Hessian are positive (i.e. λ2 < 0) is thus less restrictive
and may not include the point of planar pressure minimum in its interior (if there
does not exist a point of vanishing pressure gradient on the plane). Furthermore,
the relationship between the actual pressure distribution and the modified pressure
distribution that neglects the unsteady and viscous terms, is not clear. Also, as noted
by Cucitore, Quadrio & Baron (1999), the pressure Hessian concept as defined above
is not applicable for the case of compressible flows because of non-vanishing density
gradient and divergence of velocity.

2.1.3. � criterion

Using critical point theory Chong et al. (1990) define a vortex core to be the region
where ∇v has complex eigenvalues. In a non-rotating reference frame translating with
a fluid particle, the instantaneous streamline pattern (obtained from Taylor series
expansion of the local velocity to a linear order) is governed by the eigenvalues of ∇v.
These streamlines are closed or spiralling if two of the eigenvalues form a complex
conjugate pair (for both compressible and incompressible flows). In an unsteady flow
the usage of instantaneous streamlines implies assuming the velocity field to be frozen
at that instant in time.

The characteristic equation for ∇v is given by

λ3 + Pλ2 + Qλ + R = 0, (2.4)

where P, Q, and R are the three invariants of ∇v, defined as P = −∇ · v (first invariant),
Q (second invariant defined in § 2.1.1), and R = −Det(∇v) (third invariant). The
discriminant for equation (2.4) is (for incompressible case, i.e. when P = 0)

� =
(

1
2
R

)2
+

(
1
3
Q

)3
. (2.5)

The condition �> 0 implies that ∇v has complex eigenvalues. From equation (2.5) it
can be seen that the Q > 0 criterion is more restrictive than the �> 0 criterion (also
see figure 2c).

2.1.4. Swirling strength (λci) criterion

The ‘swirling strength’ criterion of Zhou et al. (1999) is based on the � criterion and
uses the imaginary part of the complex conjugate eigenvalue of ∇v to identify vortices.
When ∇v has complex conjugate eigenvalues, in the locally curvilinear coordinate
system (y1, y2, y3) spanned by the vectors (νr , νcr , νci) and locally translating with the



Relationships between vortex identification schemes 193

fluid particle, the instantaneous streamlines are given by

y1(t) = y1(0)eλr t , (2.6a)

y2(t) = eλcr t [y2(0) cos(λci t) + y3(0) sin(λci t)], (2.6b)

y3(t) = eλcr t [y3(0) cos(λci t) − y2(0) sin(λci t)]. (2.6c)

Here (λr , ν r) is the real eigenpair and (λcr ± iλci , νcr ± iνci) the complex conjugate
eigenpair of ∇v. In a time-frozen field, streamlines are the same as pathlines, and
t denotes the time-like parameter that evolves the pathline or streamline. It can be
seen that the flow is locally swirling in the plane spanned by (νcr , νci) and is stretched
or compressed along νr . The ‘swirling strength’, given by λci , is a measure of the
local swirling rate inside the vortex (the time period for completing one revolution
of the streamline is given by 2π/λci). The strength of stretching or compression is
determined by λr . One distinctive feature of the swirling strength criterion is that
it not only identifies the vortex core region, but also identifies the strength and the
local plane of swirling. A similar criterion based on complex eigenvalues has been
employed by Berdahl & Thompson (1993) in the context of aerodynamic flows. It
may be noted that although �= 0 and λci = 0 are equivalent, in the case of non-zero
thresholds the interpretation can be significantly different (this issue is addressed later
in this paper).

2.2. A non-local approach

All the criteria discussed in § 2.1 are based on the local analysis of the velocity
gradient tensor. The notion of vortex core being a coherent structure in a turbulent
flow introduces the concept of a small but bounded flow region with spatially
varying vorticity, where the fluid motion remains spatially and temporally coherent.
These aspects introduce a non-local variation which goes beyond the point-wise
characterization provided by the local analysis of ∇v.

An empirical Galilean invariant non-local criterion proposed by Cucitore et al.
(1999) uses the intuitive notion that the change in the relative distance between
particles inside a vortex structure is small. To quantify this they introduce a ratio

D(x, t) =

∣∣∣∣
∫ t

0

ua(τ ) dτ −
∫ t

0

ub(τ ) dτ

∣∣∣∣∫ t

0

|ua(τ ) − ub(τ )| dτ

, (2.7)

where ua and ub are the velocities of two fluid particles (a, b) in the flow and x is the
position vector of their mid-point location. The numerator of equation (2.7) is the
relative distance between the particle pair at time t , and the denominator measures
the cumulative magnitude of distance between the particle pair over the same time.
This ratio D is a function of the initial position of the particle pair (a, b) and time t . It
is bound between 0 and 1, and is a Galilean invariant quantity. For pairs of particles
inside a vortical structure, the numerator is not expected to increase much, but the
denominator grows steadily with time. Hence, the vortex is identified to be the flow
region satisfying D less than some threshold Dth. It can be inferred from equation (2.7)
that the ratio D remains small even in case of some non-vortical uniform flows.
Therefore, Cucitore et al. (1999) propose using this criterion in conjunction with the
�> 0 criterion. The idea is to identify the subset of the locally swirling �> 0 region
for which the ratio D remains less than a threshold value.
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3. New criterion: enhanced swirling strength
3.1. Criteria for a vortex core

For a three-dimensional flow, we propose the following requirements for the
identification of a vortex core:

(i) the identification criterion should be Galilean invariant;
(ii) the local flow in the frame of reference translating with the vortex should be

swirling;
(iii) the separation between the swirling material points inside the vortex core

should remain small i.e. the orbits of the material points are compact.
The first requirement is the same as that put forward by Jeong & Hussain (1995).

The second requirement is a generalization of the idea of a solid body rotation: the
local flow about every point is swirling. For example, in a Rankine vortex, the vortex
core is unambiguously defined to be the inner core of solid body rotation, where the
local streamlines (in a frame of reference translating with the point) circle around the
point. This requirement is related to the net vorticity requirement of Jeong & Hussain
(1995). In the region with no vorticity all the criteria indicate the absence of a vortex
core. The third requirement demands that the fluid particles in the vortex structure
have bounded separation (i.e. they stay close to each other) in order to have a
significant effect on the flow, thereby making it worth considering both from dynamic
and statistical viewpoints. This requirement is an inherently non-local property and
can be seen to be related to the intuitive idea of § 2.2.

The � or swirling strength criteria by themselves satisfy only the first two
requirements. In combination with a threshold value for D, as employed by Cucitore
et al. (1999), all three requirements can be satisfied. This approach, however, is
computationally more involved as it is non-local in nature and requires the evaluation
of particle trajectories. Now we introduce a local approximation of this non-local
property.

3.2. New criterion

We propose an enhancement to the swirling strength criterion in an attempt to identify
the vortex cores that meet all the three requirements stated above. The idea here is to
approximate the measure of the non-local orbital compactness based on local analysis
of time-frozen flow fields. Consider the projected motion of a fluid particle in the
plane of the vortex (i.e. the plane spanned by (νcr , νci)). From equations (2.6b) and
(2.6c), it can be seen that the time period for one revolution in the vortex plane is
2π/λci . In this plane, two points initially separated by r0, after n revolutions around
each other will be separated by rf , where the two distances can be expressed in terms
of the eigenvalues of ∇v as (also see Chong et al. 1990)

rf

r0

= exp

(
2πn

λcr

λci

)
. (3.1)

From equation (3.1) we see that there is an exponential dependence on the ratio
λcr/λci . We call this ratio, λcr/λci , the inverse spiralling compactness, as it measures
the spatial extent of the local spiralling motion. A value of λcr/λci = 0 results in a
perfectly circular path, while a positive (or negative) value of the ratio corresponds
to a path that spirals outward (or inward) in the plane of the vortex. We propose to
use this ratio as a measure of the local orbital compactness in a vortex, i.e. to identify
the material points that follow orbits which remain compact during the revolutions.

Figure 1 shows the instantaneous streamlines for two different cases with the same
value of λci , but with different values of the ratio λcr/λci . In both cases the rotation
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Figure 1. Instantaneous streamlines of one revolution for different values of λcr with a fixed
λci: (a) λcr = 0.1, λci = 1; (b) λcr =2, λci = 1 (note the scale of the axes; although not evident, one
complete spiral is shown in the figure). The starting point is taken to be (y2(0), y3(0)) = (0.1, 0)
and the basis eigenvectors are assumed to be orthogonal.

rate (or angular velocity) remains the same, but for a small value of the ratio,
λcr/λci = 0.1, in figure 1(a) we see the behaviour to be consistent with the intuitive
notion of a vortex with a spiralling path. On the other hand, for a larger value of the
ratio, λcr/λci = 2, figure 1(b) shows the rapid radial spreading out of the instantaneous
streamline, which does not appear to qualify as a vortex. It is thus evident that regions
of large values of λcr/λci have low orbital compactness and hence do not qualify as
part of a vortex, even though local values of � or λci might suggest otherwise.
Furthermore, in such regions of strong outward spiralling motion, local criteria based
on ∇v become inappropriate, since fluid begins to explore other parts of the flow far
from the reference point even as it is completing one full revolution. In particular, in
a spatially varying flow with a vortex filament, the fluid particles can be displaced by
so much that they experience a significantly different flow environment outside the
vortex filament.

For large negative values of the ratio λcr/λci , the instantaneous streamline rapidly
spirals inward in the vortex plane. Note that in an incompressible flow, the real
eigenvalue and the real part of the complex pair are related as λr = −2λcr . Thus the
rapid convergence of particles in the plane of the vortex translates to their rapid
separation along the vortex axis. If compactness of material orbit is desired only
on the vortex plane, then any negative value of λcr/λci satisfies the compactness
requirement. On the other hand, if compactness of orbit is also desired along the
vortex axis, then large negative λcr/λci violates this requirement. This leads us to two
possible ways of defining a vortex core and they are discussed below.

Considering the projected motion on the vortex plane to be the deciding factor, we
state the requirements for a point to be considered inside a vortex core as

(i) λci � ε and
(ii) λcr/λci � δ,

where ε and δ are positive thresholds. In other words, the vortex core is the intersection
set of the sets defined by λci � ε and λcr/λci � δ (refer to figure 8). Here we take λci to
be always defined non-negative. The first condition can be interpreted as a statement
of rate of rotation in the vortex core. Small values of λci correspond to long times
to complete a revolution and imply a weak vortex region. Similarly large λci values
imply a strong vortex region. As argued above, the second criterion on the ratio
λcr/λci can be interpreted as the corresponding statement on the orbital compactness
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Figure 2. Contour lines (i.e. lines of constant function values) in the (Q,R)-plane:
(a) λci; (b) λcr/λci (dashed lines represent negative contours); (c) �; (d ) λ̃2.

of the vortex core. Large values of λcr/λci imply that initially close particles do not
remain neighbours (in the plane of the vortex) after the time that has elapsed for a
complete revolution. The values of ε and δ depend on the level of swirling rate and
vortex-plane orbital compactness that we require to qualify as a vortex core.

When orbital compactness is desired both on the vortex plane and along the vortex
axis (i.e. compactness in the three-dimensional space), for an incompressible flow the
vortex core requirements are

(i) λci � ε and
(ii) −κ � λcr/λci � δ,

where κ is a positive threshold and its value depends on the desired orbital
compactness along the vortex axis. The above requirement can be easily generalized
for compressible flows.

4. Relation between the different criteria
Both the swirling strength, λci , and the inverse spiralling compactness, λcr/λci , are

uniquely determined in terms of the three scalar invariants of ∇v (see equation (2.4)).
In the special case of an incompressible flow they depend only on the second and
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third invariants, i.e. on Q and R (refer to figures 2(a) and 2(b) for the contour lines
in the (Q, R)-plane). It is known that for a two-dimensional incompressible flow the
Q, λ2, and λci criteria result in the same vortex core region (Jeong & Hussain 1995).
In this section, for a three-dimensional incompressible flow, we seek to establish the
relation between the different criteria by expressing them in terms of λci and λcr/λci .

4.1. Relation to the Q criterion

In incompressible flows, the region of Q > 0 is a subset of the region defined by
λci > 0, and the second invariant can be explicitly written as

Q = λ2
ci

(
1 − 3

(
λcr

λci

)2
)

. (4.1)

This indicates that Q > 0 can be interpreted as the region with local swirling
(λci > 0) where the local inward and outward spiralling is limited by |λcr/λci | < 1/

√
3.

Thus the Q > 0 criterion will avoid regions of strong outward spiralling given by
λcr/λci > 1/

√
3. This will, however, also avoid regions of strong inward spiralling

marked by λcr/λci < −1/
√

3, for e.g. vortices that are undergoing rapid intensification
by axial strain.

4.2. Relation to the � criterion

In incompressible flows, the discriminant � can be written as

� =
λ6

ci

27

[
1 + 9

(
λcr

λci

)2
]2

. (4.2)

For small values of λcr/λci , we have the following behaviour:

�/λ6
ci → (1/27) + (2/3)(λcr/λci)

2.

Thus, �/λ6
ci takes the lowest value of (1/27) when the local flow is purely circular, i.e.

when λcr/λci = 0, and quadratically increases with the ratio λcr/λci as the local flow
spirals in or out. The limit �= 0 is identical to the λci = 0 condition. Nevertheless,
differences emerge with the use of a small positive threshold. From equation (4.2) it is
clear that a � > �th criterion can be satisfied even when λci is very small provided the
ratio |λcr/λci | is sufficiently large. In other words, very weak swirling motion along
with intense radial divergence (or convergence) in the plane of swirl, could qualify as
a strong vortex. Furthermore, similarly to the Q criterion, the � criterion also does
not distinguish between the inward and outward spiralling motion. Figure 2(c) shows
the contour lines of � in the (Q, R)-plane (equation (2.5)).

4.3. Relation to the λ2 criterion

The λ2 criterion cannot be expressed solely in terms of the eigenvalues of ∇v, or its
scalar invariants, as the value of λ2 for a given ∇v depends also on the eigenvectors
of ∇v (see the Appendix). Similarly to the Q and � criteria, the λ2 criterion does not
distinguish between the regions of inward and outward spiralling motion.

4.3.1. Generic characterization of the λ2 < 0 region

In order to fully explore the relation between λ2 and the eigenvalues (or the scalar
invariants) of ∇v, we explore all the possible configurations of ∇v for incompressible
flows. Consider the reference coordinate axes to be aligned along the principal
directions of the strain-rate tensor (symmetric part of ∇v). The eigenvalues of the
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Figure 3. (a) Configuration of the generic characterization problem; vortex region in the
(‖Ω‖/‖S‖, ψ)-space for different values of ξ : (b) ξ = 1; (c) ξ = 0.5; (d ) ξ = 0. The contour lines
indicate: λci = 0 ( ), λ2 = 0 ( ), and λci/λcr ( ) (see legend box). The region of
real eigenvalues of ∇v is shown hatched.

strain-rate tensor can be written as σ1 � σ2 � σ3, where σ1 + σ2 + σ3 = 0 (incom-
pressibility). When σ1 � −σ3, defining the coordinate system as depicted in figure
3(a), the strain-rate tensor can be written as

S = σ1


1 0 0

0 −ξ/2 0

0 0 ξ/2 − 1


, (4.3)

where ξ determines the nature of the strain field. In the case of σ1 � −σ3, there is
converging flow in the (X2, X3)-plane and 0 � ξ � 1. Here ξ =0 corresponds to planar
strain and ξ =1 corresponds to axisymmetric converging strain. The skew-symmetric
part of the velocity gradient tensor is governed by the vorticity vector ω superposed on
the strain flow. Within a scaling factor, the velocity gradient tensor can be written as

∇v =


 1 −a sin θ sin φ a sin θ cos φ

a sin θ sin φ −ξ/2 −a cos θ

−a sin θ cos φ a cos θ ξ/2 − 1


, (4.4)

where a = |ω|/2σ1 (always non-negative by definition); θ and φ define the orientation
of the vorticity vector (see figure 3a). The relative strength of rotation rate compared

to strain rate, ‖Ω‖/‖S‖, is given by
√

2a/
√

ξ 2/2 − ξ + 2. When σ1 < −σ3, we define
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the coordinate directions (X1, X2, X3) along (σ3, σ2, σ1). In this case, there is diverging
flow in the (X2, X3)-plane and −1 � ξ < 0, where ξ = −1 corresponds to axisymmetric
diverging strain. By keeping the definition of the skew-symmetric part unchanged
it can be shown that the eigenvalues of ∇v for ξ < 0 are equal to the negative
of the eigenvalues for positive ξ of the same magnitude. Hence, analysing the ∇v

configurations for ξ � 0 is sufficient.
By varying 0 � ‖Ω‖/‖S‖ < ∞, 0 � ξ � 1, 0 � θ � π, and 0 � φ � 2π, all the

possible configurations of ∇v are covered and over this range one can compute the
region of λ2 < 0 and compare with regions of λci > 0, Q > 0, and the range of λcr/λci .
It may be noted that these relationships are independent of the scaling factor for ∇v.
From the definition of the invariants of ∇v it can be seen that Q depends only on ξ

and ‖Ω‖/‖S‖, and is independent of the orientation angles. Also, by definition, the
third invariant R depends on ξ , ‖Ω‖/‖S‖, and ψ , where ψ is formed by combining
the angles θ and φ as

ψ =
3 cos 2θ − 2(ξ − 1) cos 2φ sin2 θ − (2ξ − 5)

2(4 − ξ )
. (4.5)

Hence, the eigenvalues of ∇v are now dependent only on ‖Ω‖/‖S‖, ξ , and ψ (where
0 � ψ � 1). Figure 3(b–d ) shows the contour lines of λcr/λci plotted as a function of
‖Ω‖/‖S‖ and ψ for three types of strain flows (determined by ξ ). Note that �= 0
(or λci =0) corresponds to λcr/λci → ∞; Q = 0 corresponds to λcr/λci = ±1/

√
3, which

is identical to the condition ‖Ω‖/‖S‖ =1. We are particularly interested in exploring
the range of λcr/λci corresponding to λ2 < 0, which in turn indicates the threshold
imposed by λ2 < 0 on the inward or outward spiralling motion. Now we discuss the
different strain flows and thereafter summarize our findings.

(i) ξ = 1: axisymmetric radial convergence
We first consider the case of axisymmetric strain rate, with axisymmetric radial
convergence along the (X2, X3)-plane and axial divergence along the X1-axis. In this
strain configuration ψ = cos2 θ and hence the results are independent of the angle
φ. The λci =0 contour line has two branches that exist over the range 0 <ψ � 0.12.
Between the two branches all three eigenvalues of ∇v are real, and outside the two
branches a complex eigenpair exists. According to the λci > 0 criterion, in the range
0 < ψ � 0.12 a vortex exists even for infinitesimally small values of ‖Ω‖/‖S‖, but
with increasing relative vorticity magnitude the vortex disappears and reappears again
above a certain relative vorticity magnitude. This behaviour is clearly counterintuitive
and we call this the disappearing vortex problem. Investigating the region below the
lower branch reveals that the nature of swirling is quite unusual here. The plane
of swirling, as identified by the complex eigenvectors, is such that its normal is not
nearly aligned with the local vorticity vector, but in fact nearly orthogonal to it.
In contrast, in the region above the upper branch, where the relative magnitude of
vorticity is substantial, the normal to the plane of swirling and the real eigenvectors
are aligned close to the vorticity vector, as can be expected of a strong vortical region.
Furthermore, the value of the inverse spiralling compactness, λcr/λci , takes large
negative values in the region below the lower branch. This region can be eliminated
from the vortex core if there is a restriction imposed on the orbital compactness along
the vortex axis, i.e. using λcr/λci � −κ .

When the vorticity vector is perfectly aligned along the axis of the axisymmetric
strain rate (X1-axis), ψ =1, and in this limit λ2 = 0 corresponds to λcr/λci = −1 and a
relative rotation rate magnitude of ‖Ω‖/‖S‖ ≈ 0.58. As the alignment is changed by
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increasing θ (or decreasing ψ), the inverse spiralling compactness and relative rotation
rate (that correspond to the λ2 = 0 contour line) increase: for ψ ≈ 0.12 we approach
the limit λcr/λci → −1/

√
3 and ‖Ω‖/‖S‖ → 1. Over the range 0.12 � ψ � 1 the Q > 0

criterion yields only a subset of the vortex extracted by the λ2 < 0 criterion, since for
the same value of ψ the Q > 0 condition is satisfied only at a larger ‖Ω‖/‖S‖. In
other words, the λ2 < 0 criterion is less restrictive than the Q > 0 criterion in this range
of ψ values. The case of ψ ≈ 0.12 and ‖Ω‖/‖S‖ = 1 corresponds to a generalized
shear layer with all three eigenvalues of ∇v becoming identically zero. As a result, the
ratio λcr/λci is indeterminate at this point and results in a cusp. For ψ from ∼ 0.12
to 0, the λ2 = 0 contour line is equivalent to a positive value of λcr/λci over the range
from 1/

√
3 to ∼0.4 and correspondingly demands a stronger relative rotation rate,

‖Ω‖/‖S‖, from 1.0 to ∼1.15. Over the range 0 � ψ � 0.12, the λ2 < 0 criterion is
more restrictive than the Q > 0 criterion.

(ii) ξ =0.5
In this case the strain rate is neither axisymmetric nor planar. The λci = 0 contour
line still shows signs of the disappearing vortex problem over a narrow range of
0.28 � ψ � 0.31. The behaviour of the two swirling regions between the lower branches
and above the upper branch is quite different. In particular the region of λci > 0 that
exists between the lower branches is associated with large negative values of λcr/λci

and thus can be eliminated if orbital compactness requirement is imposed along the
vortex axis.

ψ = 1 corresponds to the vorticity vector orientation θ = 0 and is independent of
φ. For this orientation the λ2 = 0 contour line is equivalent to λcr/λci ≈ −0.78 and
‖Ω‖/‖S‖ ≈ 0.81. As can be seen from equation (4.5), varying combinations of θ and
φ can lead to the same value for ψ , and therefore for a fixed ψ the λ2 = 0 contour
line covers a range of ‖Ω‖/‖S‖ and correspondingly a range of λcr/λci . This range
is indicated in figure 3(b) as the shaded region. For 1 � ψ � 0.31, the λ2 < 0 region
extends over the range −1.3 � λcr/λci < −1/

√
3 and is less restrictive than Q > 0. The

case of ψ ≈ 0.31 and ‖Ω‖/‖S‖ = 1 corresponds to a generalized shear layer. For
0.31 � ψ � 0, the λ2 < 0 region covers the range 1/

√
3 > λcr/λci � 0.3 and is more

restrictive than Q > 0.
(iii) ξ = 0: Planar strain

Here the plane of strain is the (X1, X3)-plane. Note that in this limit the problem
of the disappearing vortex is absent. The particular case of θ = φ = π/2 corresponds
to the classic two-dimensional shear layer. The point of cusp given by ψ = 0.5 and
‖Ω‖/‖S‖ = 1 is again the generalized shear layer where the eigenvalues of ∇v are
identically zero. The condition λ2 = 0 corresponds to |λcr/λci | =1/

√
3 and ‖Ω‖/

‖S‖ = 1. Thus, for planar strain, irrespective of vorticity orientation, the λ2 < 0 criterion
is identical to the Q > 0 criterion.

(iv) Summary of observations
Based on the above discussion, it is clear that the λ2 < 0 region corresponds to
a range of positive and negative λcr/λci , indicating a threshold on both outward
and inward spiral regions. Although there is no unique relation between λ2 and
λcr/λci , an investigation of the configurational space shows that the λ2 < 0 region is
approximately bracketed by the range −O(1) � λcr/λci � O(1). Note that there are
a few cases where λcr/λci can take very high values or be undefined (see § 4.3.2 for
the range where λcr/λci is undefined). Also note that all the criteria agree on the
presence of a vortex in the intense vortical regions (i.e. for high values of ‖Ω‖/‖S‖).
The differences emerge in the regions where ‖Ω‖/‖S‖ is small. Hence, the different
schemes disagree mainly on the boundary of the vortex core.



Relationships between vortex identification schemes 201

0.005 1.025

1.000

0.975

0.950

0.004

0.003

0.002

φ
/π

0.001

0
0.480 0.485 0.490

θ/π θ/π
0.495 0.50 0.480 0.485 0.490 0.495 0.50

(a) (b)

||Ω
|| /

||S
||

λ2 < 0

λci = 0

Figure 4. (a) Region in (θ, φ)-plane where λ2 < 0 and λci =0. The curves represent varying ξ
values from 0.01 (rightmost) to 0.22 (leftmost), with an increment of 0.01. (b) For a horizontal
slice (at φ = 0) through the curve for ξ = 0.1 in frame (a), the shaded area in this frame
represents the region of λci = 0 and λ2 < 0 in (θ, ‖Ω‖/‖S‖)-space.

4.3.2. The largest vortex region

Here we compare the size of the vortex region extracted by the λci > 0 (or �> 0)
criterion with that by the Q > 0 and λ2 < 0 criteria. In figure 3(b–d ), both the Q > 0
and λ2 < 0 conditions never extend into the region of all three real eigenvalues of ∇v.
Hence, it is tempting to conjecture that the flow region defined by λci > 0 captures the
largest vortex region. It was noted earlier that the vortex region identified by λci > 0
is guaranteed to be larger than or equal to that extracted by Q > 0. Alternatively, the
same conclusion can be deduced from the equivalence of Q =0 and |λci/λcr | = 1/

√
3. In

the case of the λ2 criterion, however, there exists a very narrow range of configuration
of ∇v for which λ2 is negative, while all the eigenvalues of ∇v are real. The limited
extent of this possibility in the configuration space is shown in figure 4(a). Each curve
corresponds to a constant value of ξ and the region inside the curve defines the range
of θ , φ combination (for some range of ‖Ω‖/‖S‖) for which a vortex is predicted
according to the λ2 < 0 criterion, but not by the λci > 0 criterion. In this region, the
λ2 < 0 criterion predicts a vortex in a region where there is no local swirling. This
possibility is further illustrated in figure 4(b), where the contour lines of λ2 = 0 and
λci = 0 are plotted for a range of θ and ‖Ω‖/‖S‖, at a fixed value of ξ =0.1 and φ = 0.
A narrow region (shaded in the figure) can be identified over which the λ2 < 0 criterion
predicts a vortex where local swirling does not exist. Thus for a small range of ξ close
to planar strain (0 < ξ � 0.22), over a very small range of vorticity orientation where
the vorticity vector is almost normal to the plane of strain (θ ≈ π/2, φ ≈ 0), and
for a narrow range of vorticity magnitude approximately equal to that of strain rate
(‖Ω‖/‖S‖ ≈ 1), while λ2 < 0 criterion signals a vortex, the λci > 0 criterion does not.
By symmetry, in the ξ < 0 regime as well, over a narrow range in configuration space,
λ2 takes negatives values, even though there is no swirling in the flow according to
λci . Note that a planar strain with θ = π/2, φ = 0, and ‖Ω‖/‖S‖ = 1 corresponds to
a two-dimensional shear flow. From the limited extent of this region of λ2 < 0 with
λci = 0, it appears reasonable to conclude that for all practical purposes the λci > 0
condition will extract the largest vortex core among all the criteria considered. In
our experience with actual turbulent flow data, we see that the region of λci > 0 does
indeed extract the largest vortex core region, implying that in turbulent flows the
configuration depicted in figure 4 seldom occurs.
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4.3.3. Special case formulation: orthonormal eigen-basis vectors

It was noted earlier that λ2 cannot be determined from the invariants of ∇v because
of its additional dependence on the orientation of the eigenvectors of ∇v. Nevertheless,
in the special case when the eigen-basis vectors (νr , νcr , νci) are orthonormal, λ2 can
be expressed in terms of the eigenvalues of ∇v as

λ2 = λ̃2 = λ2
ci

((
λcr

λci

)2

− 1

)
. (4.6)

Hence, for this case, the λ2 < 0 condition is equivalent to |λcr/λci | < 1.
It may be noted that the real-valued ∇v being a normal tensor (i.e.

(∇v) · (∇v)T = (∇v)T · (∇v)) is a necessary and a sufficient condition for the eigen-
basis vectors to be orthonormal. The condition λ2 = λ̃2, is not accurate when the
eigen-basis vectors of ∇v are not orthonormal. Nevertheless, even in such cases we
will use λ̃2 as a proxy for λ2. In figure 3, the λ̃2 = 0 contour line is represented by
|λcr/λci | =1 (i.e. λcr/λci contour numbers 1 and 5). For the case of axisymmetric radial
convergent strain (ξ =1), in the region of outward spiral marked by positive values
for the ratio λcr/λci , λ̃2 = 0 appears to provide a good approximation for λ2 = 0. In
the inward spiral region, λ̃2 = 0 is less restrictive than λ2 = 0. A similar behaviour is
observed for the case of ξ = 0.5. In the planar case (ξ =0), λ̃2 = 0 is less restrictive
than λ2 = 0 for both the inward and outward spiral regions.

4.4. Simple examples

4.4.1. Isolated Burgers’ vortex

Here we discuss the vortex core of the radially symmetric Burgers’ vortex (Burgers
1948). This vortex has been widely used for modelling fine scales of turbulence
(Pullin & Saffman 1998). The Burgers’ vortex is an exact steady solution of the
Navier–Stokes equation, where the radial viscous diffusion of vorticity is dynamically
balanced by vortex stretching due to an axisymmetric strain. The velocity components
in cylindrical coordinates for a Burgers’ vortex can be written as

vr = −ξr, (4.7a)

vθ =
Γ

2πr

[
1 − exp

(
−r2ξ

2ν

)]
, (4.7b)

vz = 2ξz, (4.7c)

where Γ is the circulation, ξ the axisymmetric strain rate, and ν the kinematic
viscosity. The Reynolds number for the vortex can be defined as Re =Γ/(2πν).

In this simple flow field, the various vortex identification criteria can be analytically
expressed as

λci = Reξ
√

η(r̃) and λcr/λci = − 1

Re
√

η(r̃)
, (4.8a)

Q = ξ 2(Re2η(r̃) − 3), (4.8b)

� =
ξ 6Re2η(r̃)

27
[9 + Re2η(r̃)]2, (4.8c)

λ2 = ξ 2

[
1 − Re2η(r̃) − Re

r̃2

(
(2 + r̃2)e−r̃2/2 − 2

)]
, (4.8d)

λ̃2 = ξ 2(1 − Re2η(r̃)), (4.8e)
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where r̃ =
√

ξ/ν and the auxiliary function η(r̃) is defined as

η(r̃) =
1

r̃4

(
(1 + r̃2)e−r̃2/2 − 1

)(
1 − e−r̃2/2

)
.

The λci > 0 condition simply translates to η(r̃) > 0 and yields a non-dimensional vortex
size of r0

√
ξ/ν ≈ 1.585, which is independent of the Reynolds number. Interestingly,

the radial distribution of circumferential velocity peaks precisely at this radial location.
Thus, as in the case of Rankine vortex, the circumferential velocity radially increases
within the vortex core and outside the vortex core the circumferential velocity decays
as a point vortex. In the core region identified by λci > 0, the values of λcr/λci are
negative everywhere, hence the local flow is spiralling inward in the plane of the
vortex. If orbital compactness is desired only on the vortex plane, then the vortex
core is independent of the values of λcr/λci . Additionally, if compactness is desired
along the vortex axis too, then the choice the threshold κ makes the vortex core radius
a function of Re. From equation (4.8a), we see that λcr/λci ∼ −1/Re, which implies
that at large Reynolds numbers the vortex size will not be sensitively dependent on
the threshold κ .

Figure 5 shows the non-dimensional vortex radius as a function of Re implied by
the different criteria. It can be easily verified that for Re < 2

√
3, Q is negative for all

radii r and thus for Re < 2
√

3 there is no vortex core according to Q > 0 criterion.
As the Reynolds number increases above this value, the radius of the vortex core
(identified by Q > 0) increases, and the limit Re → ∞ yields rQ>0 → r0. As discussed

in § 4.1, the Q =0 condition is identical to |λcr/λci | =1/
√

3 (see contour number 2).
The λ2 < 0 criterion also has a lower Reynolds number limit for the existence of a

vortex core: for Re < 2, λ2 > 0 at all radial locations. As Reynolds number increases
above this limit, the radius of the vortex core (identified by λ2 < 0) increases, and the
limit Re → ∞ yields rλ2<0 → r0. Unlike Q =0, however, λ2 = 0 does not correspond
to a fixed λcr/λci ratio. As Re ranges from 2 to ∞, the λ2 = 0 curve corresponds to a
range of λcr/λci from −1 to 0.
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Figure 6. (a) Consolidated jet (M = 3.85, Γ0 = 1): r4λ2
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2 ( ), and λcr/λci( ). The inset in both the figures depicts the motion

in the meridional plane.

For the case of Re → ∞, the behaviour of the limits rQ>0 → r0 and rλ2<0 → r0 is
to be expected because λcr/λci → 0 (since λcr/λci ∼ −1/Re): for λcr/λci =0 the flow
becomes two-dimensional and all the criteria agree.

4.4.2. Swirling jet

Jeong & Hussain (1995) discuss the problem of a swirling jet emerging from a point
source of axial momentum and circulation into a half-space. The flow is conically
symmetric and a solution of the incompressible Navier–Stokes equation. This problem
was used to highlight the differences between the �, Q, and λ2 criteria for identifying
vortex cores. Here we explore the relation between the different criteria in terms of
the ratio λcr/λci .

We set up the problem following the formulation in Shtern & Hussain (1993).
Our numerical approach, however, differs: we use the Newton–Kantorivich method
with a Chebyshev grid in the interval 0 � cos θ � 1. Here θ is the polar angle (in
spherical coordinates) measured from the axis of the jet. Shtern & Hussain (1993)
identify two different topologies of the solution based on the meridional motion:
(a) a ‘consolidated jet’, having a strong upward swirling helical jet (see the inset in
figure 6a), and (b) a ‘two-cell pattern’, having a downward near-axis flow with a
conical outflow at an angle from it (see the inset in figure 6b). The flow topology
depends on two parameters: a measure of the relative strength of axial momentum
flux to circulation, M , and swirl Reynolds number, Γ0 (see Shtern & Hussain 1993,
for their definition). From the solution map presented in Shtern & Hussain (1993,
figure 19), we choose two points in the parameter plane (M, Γ0) corresponding to the
two distinct flow topologies: consolidated jet (3.85, 1) and two-cell pattern (0.99, 30).

In the case of a consolidated jet (figure 6a), the Q > 0 and λ2 < 0 criteria identify
vortex cores of similar size, whereas the λci > 0 criterion identifies a substantially
larger vortex core that extends up to θ ≈ 0.44π. For the two-cell pattern (figure 6b),
according to the λci > 0 criterion almost the entire flow qualifies as vortex core. In
contrast, both the Q > 0 and λ2 < 0 criteria extract two distinct vortex cells within the
flow. In this case, the vortex cores identified by the Q > 0 and λ2 < 0 criteria are not
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Figure 7. Vortex structure using zero threshold for forced isotropic turbulence at Reλ = 164.
The volume represented is (1/4)3 of the simulation box. (a) λci > 0 or �> 0; (b) λ2 < 0. The
vortex structure for Q > 0 looks similar to these figures.

in perfect agreement. These differences in the vortex cores identified by the different
criteria are in agreement with the observations of Jeong & Hussain (1995).

The inverse spiralling compactness, λcr/λci , can be used to explain these differences.
In figure 6(a), it can be observed that for θ larger than about 0.3π, the ratio λcr/λci

rapidly increases. In this range of θ , even though λci > 0 suggests local swirling, the
instantaneous streamlines will strongly spiral out and violate the condition of spatial
compactness. With an additional sensible threshold on λcr/λci , the λci > 0 criterion
can yield vortex cores comparable to that identified by the Q > 0 and λ2 < 0 criteria.
Thus, in this case, the vortex core identified by the Q > 0 and λ2 < 0 criteria can
be interpreted as swirling regions with an additional constraint on the strength of
outward spiralling.

Similarly, in figure 6(b), with a λcr/λci threshold, what appears to be a single vortex
system for the λci > 0 criterion, will become a split vortex system as identified by
the other two criteria. A positive threshold for λcr/λci limits the outward spiralling
motion, and hence limits the size of the vortex cell that is closer to the jet plane.
Similarly, a negative threshold for λcr/λci that limits the strength of inward spiralling
motion, limits the core size of the vortex close to the jet axis. In essence, the differences
between the vortex structures extracted by the different criteria can be interpreted
as a consequence of the varying limits these criteria implicitly place on the level of
acceptable inward or outward spiralling motion. As a result, with appropriate positive
and negative thresholds for λcr/λci , the λci criterion can be made to reproduce the
results of other criteria.

5. Non-zero threshold
The above discussion of the different criteria has been centred on the zero threshold.

While this is a possibility for visualizing vortex cores in simple laminar flows, the
application of the different criteria in complex turbulent flows has been generally with
some non-zero threshold. The non-zero threshold certainly introduces some arbitrar-
iness into vortex core identification through the choice of its value. Nevertheless,
a non-zero threshold is quite appealing since the interest is in identifying intense
vortical structures. For example, figure 7 shows the vortex cores as identified by the



206 P. Chakraborty, S. Balachandar and R. J. Adrian

λci > ε

λcr/λci < δ

λcr/λci < δ

λcr/λci < δ

λci  > ε

λci > ε

(a) (b) (c)

Figure 8. A schematic representation of vortex core requirement
under different possible scenarios.

�> 0 or λci > 0 and λ2 < 0 criteria applied to a box of isotropic turbulence computed
on a (256)3 grid at a Taylor microscale Reynolds number of 164 (Langford & Moser
1999). The vortex cores as extracted by the two different criteria with zero threshold
are qualitatively similar and tend to be volume filling. The worm-like intense vortical
structures that are characteristic of isotropic turbulence can be extracted only with an
appropriate non-zero threshold (as will be shown in § 5.3.1). The non-zero λci threshold
has a clear physical interpretation in terms of rate of rotation of material points in
the vortex core and can be judiciously chosen based on the relevant time scales of the
problem at hand. Threshold values for the other criteria play a similar role, although
the precise physical interpretation may be less clear. It may be noted that non-local
schemes can be formulated where a threshold need not be explicitly imposed, but can
result from imposing a criterion on the spatial variation of some non-local parameter
(for example see Tanahashi, Miyauchi & Ikeda 1997, who consider the variance of
azimuthal velocity).

Clearly the Q, �, λci , and λ2 criteria are not identical and as a result some differences
do exist between their respective vortex cores. The identified vortex geometry satisfies
the requirements of the identification scheme used, and these requirements are different
for the different schemes. Nevertheless, it has been observed in several turbulent
flows (for example see Zhou et al. 1999; Dubief & Delcayre 2000) that the vortex
core structures extracted by the different criteria using non-zero thresholds are quite
similar. Our experience with different turbulent flows indicates that the intense vortical
regions in these flows share a special property (captured using λcr/λci). In these flows,
for extracting similar vortex cores of sufficient intensity, the key is the appropriate
choice of the threshold. In this section we formulate the notion of the equivalence
of thresholds and the conditions needed for its applicability. With thresholds of
‘equivalent magnitude’ for the different criteria, the resulting vortex cores are quite
similar for all practical purposes of kinematic and dynamic interpretation.

5.1. Equivalent threshold

Here we consider the following problem: given the threshold conditions

λci � (λci)th = ε and (λcr/λci) � (λcr/λci)th = δ, (5.1)

what are the corresponding ‘equivalent’ thresholds for Q, �, and λ2? This equivalence
is in the sense of extracting similar vortex regions. The above threshold conditions for
λci and λcr/λci are appealing since they have precise interpretations in terms of local
measures of the rate of rotation and spiralling compactness inside the vortex core. As
illustrated in figure 8, the interplay between the two thresholds can be complicated.
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Figure 9. Contour lines (in the Q,R-plane) of (λci)th = ε = 0.8 ( ) with the corresponding
Qth ( ), �th ( ), and λ̃2th ( ), as defined in equation (5.2). Also plotted
are the contour lines of λcr/λci ( ) and the shaded contours that represent the joint
probability density function between Q and R for the worms of isotropic turbulence identified
by (λci)th = 0.8 (refer to § 5.3.1).

For example, the region identified by λcr/λci � δ can be completely embedded within
the region identified by λci � ε (see frame a), in which case the vortex core is simply
identified by the former condition with the value of λci varying along its boundary.
Frame (b) illustrates the converse scenario where λci � ε subsumes the λcr/λci � δ

condition. A more complex scenario is depicted in frame (c).
It is clear from figure 2 that no single threshold value for Q, �, or λ̃2 will precisely

replicate the vortex core extracted by equation (5.1). Similarly, the converse is also
true: no single values of λci and λcr/λci can precisely capture the vortex core obtained
from some threshold for Q, � or λ̃2. (This can also be inferred from the equations
relating these criteria.) Here, as an alternative, we seek simple equivalent threshold
conditions that extract essentially similar vortex core structures when applied to
realistic complex flows of interest. Our proposal is based on the following observation:
inside the intense vortical structures of most turbulent flows, the swirling motion
dominates and the ratio |λcr/λci | takes small values. For incompressible flows the
limit λcr/λci → 0 corresponds to two-dimensional motion in the vortex plane, thereby
indicating that the local motion in the intense structures is essentially planar with
limited radial motion. This observation confirms to the intuitive notion of an intense
swirling region. Figure 9 shows the joint probability density between Q and R for
worms in isotropic turbulence along with contour lines of λcr/λci . It is clear that
the most likely values of |λcr/λci | are quite small and this is typical of most other
turbulent flows as well. Based on the above observation, a simple proposal is

Q � Qth = ε2, (5.2a)

� � �th = 1
27

ε6, (5.2b)

λ2 � (λ2)th = (λ̃2)th = −ε2. (5.2c)
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The above thresholds become exact for λcr/λci = 0. Note that λ2 and λ̃2 are equal in
this limit. Figure 9 shows the contour line of λci = ε along with the corresponding lines
of Q =Qth, �= �th, and λ̃2 = (λ̃2)th, with the threshold values of Q, �, and λ̃2 defined
by equation (5.2). The different criteria are in agreement at the apex (at λcr/λci = 0). It
can be readily seen that the vortex core extracted by the Q criterion as defined above
will be the smallest structure and the vortex cores extracted by the λci and � criteria
will be progressively larger. No such definitive statement can be made about the λ2

criterion as it cannot be uniquely determined from Q and R. As a proxy in figure 9
we have plotted the contour line of λ̃2 = (λ̃2)th, which extracts a vortex core that is
intermediate in size between those extracted by the Q and λci criteria. The equivalent
threshold definition given in equation (5.2) is clearly non-optimal. More elaborate
definitions of equivalent thresholds can be proposed in replacement of equation (5.2)
and these definitions can be designed to optimize, say, the degree of overlap between
the extracted vortex cores. Such optimization will be flow dependent and hence will
not be pursued here. More importantly, we will see that in turbulent flows that we
investigate (see § 5.3), the thresholds as defined above yield vortex core structures
that are nearly identical for purposes of kinematic and dynamic interpretation. It is
important to note that this simple proposal is valid for λcr/λci → 0 and significant
differences can emerge as the inverse spiralling compactness becomes non-zero.

5.2. Burgers’ vortex revisited

Here we re-examine the Burgers’ vortex in the context of a non-zero threshold for
the different criteria. For any given threshold, say λci = ε, the corresponding precise
thresholds for the Q, �, and λ2 criteria can be found that will extract identical vortex
cores for this problem. For the Q and � criteria, the corresponding precise thresholds
depend on the axisymmetric strain rate ξ as well

Qth = ε2 − 3ξ 2 and �th =
1

27
ε2ξ 4

(
9 +

ε2

ξ 2

)2

. (5.3)

For the λ2 criterion, the precise threshold that extracts an identical vortex core depends
on both ξ and Re. Consider now a complex flow field composed of a superposition
of Burgers’ vortices with varying strain rate ξ and Reynolds number Re. Since the
thresholds depend on the strain rate (and Reynolds number in the case of λ2), given a
threshold λci = ε, it is not possible to identify a unique threshold for the other criteria
that will extract vortices identical to that from λci = ε. This will be the likely scenario
in a complex turbulent flow. The best one can hope for is to identify equivalent
thresholds that will optimize the overlap of the vortex cores identified by the different
criteria. For an assembly of Burgers’ vortices such an optimization can be performed
in terms of the statistical properties of the assembly.

Here we apply the simple equivalent thresholds presented in equation (5.2) to the
case of a Burgers’ vortex to evaluate its effectiveness. Figure 10 shows the Burgers’
vortex core radius extracted by the different criteria as a function of ε2/Re2. At
Re= 10, the differences in the vortex core radii are significant. As expected, the
vortex core radii extracted by the different criteria in decreasing order are: �, λci ,
λ̃2, and Q. The radius extracted using the λ2 criterion does not follow such a trend,
but it remains close to the radii obtained using Q and λ̃2. The above behaviour of
the different criteria remains the same with increasing Reynolds number, but the
differences become increasingly insignificant. At Re = 30, the differences between the
vortex core radii extracted by the different criteria are almost negligible. This is
expected because λcr/λci ∼ Re−1 (refer to the argument in § 4.4.1). Thus, it is clear
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Figure 10. Burgers’ vortex core radius as a function of threshold used for: (a) Re =10;
(b) Re= 30. The different lines represent: �th ( ), (λci)

2
th ( ), λ̃2th ( ), λ2 ( ),

and Qth ( ).

that with increasing intensity of the vortex, the differences between the various criteria
diminish.

5.3. Application to turbulent flows

Three canonical cases of turbulent flows are studied: forced isotropic turbulence,
wake flow behind a sphere, and channel flow. It is seen that using the proposal for
equivalent thresholds all the criteria result in almost identical vortical structures. In
this section we look at the case of isotropic turbulence. The results for the other flows
follow the same trend (refer to Chakraborty, Balachandar & Adrian 2004).

5.3.1. Forced isotropic turbulence

We use 2563 DNS data (Langford & Moser 1999) of incompressible forced isotropic
turbulence at Reynolds number (based on Taylor microscale) Reλ = 164. We are
interested in identifying the coherent vortical structures in this flow. The familiar
vortex ‘worms’ of isotropic turbulence are intense vortical structures and hence to
capture these worms we impose a high rate of rotation requirement by selecting
(λci)thη/uη =0.8. Here η and uη are the Kolmogorov length and velocity scales respec-
tively. Based on the above threshold for λci , we determine the equivalent thresholds
for the other criteria using the proposal of equation (5.2). The vortex worms are
regions of intense swirling and the values of |λcr/λci | inside them are very small (refer
to figure 9). Hence we expect the equivalent-threshold proposal to result in similar
looking vortical structures. Indeed, this expectation is confirmed in figure 11, which
depicts the vortex cores identified by the different criteria. In spite of the simplicity
of the equivalence of the different thresholds, the resulting structures for the λci , Q,
λ2, and λ̃2 criteria are strikingly similar for the purposes of kinematic and dynamic
interpretation.

The only difference seems to be the � criterion, which appears to be noisy in certain
regions of the flow (highlighted in figure 11c). We note that this behaviour of the �

criterion is in agreement with that observed by Jeong & Hussain (1995). The values
of λcr/λci at these highlighted places of noisy vortex core were found to be quite high.
This results in a high value of � even though local swirling of the flow, as measured
by λci , is low. These regions do not qualify as vortex core for both low values of
λci and large values of λcr/λci . Nevertheless, the � criterion owing to its definition
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Figure 11. Vortex worms in isotropic turbulence. For the sake of clarity (1/4)3 of the volume
of the entire simulation box is shown. The different non-dimensional thresholds are computed
using equation (5.2) for (λci)th = 0.8: (a) λci; (b) Q; (c) �; (d ) λ2; (e) λ̃2. Frame (f ) shows the
quantitative comparison of the overlapping volume measure for the different criteria.
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(equation (4.2)), identifies them as vortex core. If the � definition is augmented by
stripping off regions with high λcr/λci , these noisy regions disappear.

The visualization of the vortex isosurfaces involves interpolating the vortex identi-
fication parameter between the computational grid points. These quantities are com-
puted using powers of ∇v components (for example, computation of � involves sixth
power), and they are accurate at the grid points. Nevertheless, if spectral interpolation
is used to visualize the isosurfaces, the interpolated region may be corrupted by
aliasing effects.

6. Conclusion
The presence of viscosity in real fluids results in continuity in the kinematic features

of the flow field. This allows the use of local behaviour to make a reasonable estimate
of some non-local features of the flow in space and time. We have addressed the
problem of identifying the vortex cores using local schemes. This work is not restricted
exclusively to fluid flows, but can be applied to any smooth three-dimensional vector
fields.

A proposal for the features in a vortex core was made using the ideas of swirling rate
and orbital compactness. Local flow kinematic parameters were identified to provide
a measure of the swirling rate (λci) and inverse spiralling compactness (λcr/λci), which
have a precise mathematical foundation and unambiguous physical interpretation.

The inter-relationships between the different local criteria were explored. Closed-
form relations were obtained for relating the local kinematic parameters λci and
λcr/λci , with Q and �. Such a relation with λ2 is not possible except for the special
case of orthonormal eigenvectors of ∇v. This special case was used to approximate
the behaviour of the λ2 criterion and was called λ̃2. A generic characterization of
the region identified by λ2 < 0 was made by analysing all the possible configurations
of ∇v. These inter-relationships provide a new interpretation of the various criteria
in terms of the local flow kinematics. Characterization of the different criteria was
done for both zero and the commonly employed non-zero thresholds. Based on the
observation that a region of intense swirling is approximately locally two-dimensional
with limited radial motion, a simple proposal for the thresholds for Q, �, and λ2

was proposed based on the threshold for λci . It was observed that in the intense
swirling regions (for example a Burgers’ vortex at high Re or vortical structures in
turbulent flows), the vortex structures educed using these thresholds were identical
for the purposes of kinematic and dynamic interpretation.

The case of a swirling jet, where the different criteria result in conflicting identifica-
tion of vortical regions, was explained on the basis of inverse spiralling compactness
(λcr/λci) parameter values. It was seen that using a non-zero threshold with the � cri-
terion can be quite misleading. Nonetheless, for most of the cases of practical interest,
additionally using an appropriate threshold for λcr/λci will result in similar vortical
structures. To be useful as a qualitative and a quantitative tool for understanding
the fundamental processes in turbulence, it is imperative that these thresholds have a
clear interpretation. In this sense, the present proposal has an advantage since both
λci and the ratio λcr/λci have a simple and precise interpretation of the local flow
kinematics (for both zero and non-zero threshold).

This work was partially supported by NSF-CTS99-10543 and CRDF UP2-2429-
KV-02. The authors thank the referees for their thorough reviews. One of the authors
(P. C.), thanks the support from Computational Science and Engineering Fellowship,
UIUC 2001-03.
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Appendix. Bounds on the eigen-spectrum
It was noted that λ2 cannot be expressed solely in terms of the eigenvalues of ∇v.

Here we explore the possibility of specifying bounds on the eigenvalues of S2 + Ω2.
The idea is to obtain a range of variation of λ2 when the eigenvalues of ∇v are
known. We restrict our analysis to the case when ∇v has complex eigenvalues.

A.1. Bromwich bounds

It can be shown that

S2 + Ω2 = sym(∇v2). (A 1)

From the trace equality condition (i.e. tr[sym(∇v2)] = tr[S2 + Ω2]), we obtain

λ1 + λ2 + λ3 = 2λ2
ci

(
3

(
λcr

λci

)2

− 1

)
. (A 2)

Using Bromwich bounds (Mirsky 1963) for the real part of eigenvalues of ∇v2, we
obtain

λ1 � 4λ2
cr , (A 3a)

λ3 � λ2
cr − λ2

ci . (A 3b)

Combining equations (A 2) and (A 3), we obtain the following inequalities:

λ2 + λ3 � 2λ2
ci

((
λcr

λci

)2

− 1

)
, (A 4a)

λ1 + λ2 � λ2
ci

(
5

(
λcr

λci

)2

− 1

)
. (A 4b)

Using Bromwich bounds for ∇v defined in equation (4.4), we obtain

λci � a, (A 5a)

−1

2
� λcr �

1

2

(
1 − ξ

2

)
. (A 5b)

A.2. Eigenvalues of sums of Hermitian matrices

Let the principal strain rates be denoted by (σ1, σ2, σ3), where σ 2
1 � σ 2

2 � σ 2
3 , and

the vorticity magnitude be denoted by ω (then the eigenvalues of Ω are (0, ±iω/2)).
Using the results from Horn (1962), we obtain

σ 2
1 − ω2/4

σ 2
3

}
� λ1 � σ 2

1 , (A 6a)

σ 2
2 − ω2/4 � λ2 �

{
σ 2

1 − ω2/4
σ 2

2

, (A 6b)

σ 2
3 − ω2/4 � λ3 �

{
σ 2

2 − ω2/4
σ 2

3

. (A 6c)

For λ2 � 0, equation (A 6b) becomes

σ 2
2 − ω2

4
� λ2 � σ 2

1 − ω2

4
. (A 7)
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Applying the bounds for λ2 (equation (A 7)) for the case of ∇v of equation (4.4), as
well as for the case when −1 � ξ � 0, we obtain(

1 − |ξ |
2

)2

− ω2

4
� λ2 � 1 − ω2

4
. (A 8)

Note that the above equation assumes that ∇v has the form of equation (4.4),
i.e. ignores the scaling factor. Now we show an example of using equation (A 8).
Tanahashi, Iwase & Miyauchi (2001) find the strain rate eigenvalues at the centre
of the fine-scale eddies in turbulent mixing layers to have the ratio −5 : 1 : 4. This
implies ξ = −2/5 and hence, at the centre of these fine-scale eddies, the values of λ2

are bounded by (using equation (A 8))

16

25
− ω2

4
� λ2 � 1 − ω2

4
. (A 9)
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Jiménez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity
in isotropic turbulence. J. Fluid Mech. 255, 65–90.
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